
1

X-MAS: SUPPORTING THE TEDIOUS WORK OF
VALIDATION IN AGENT-BASED SIMULATION

Y.I.L. SUEMATSU∗ and K. SHIMOHARA, ATR International, Kyoto, Japan,

and Kyoto University, Kyoto, Japan
K. TAKADAMA, ATR International, Kyoto, Japan,

and Tokyo Institute of Technology, Tokyo, Japan
O. KATAI, Kyoto University, Kyoto, Japan

ABSTRACT

Validation is an essential issue in the growing field of agent-based simulation (ABS), as
ABS has become a prominent paradigm in the study of social complex systems.
However, the main difficulty faced in this validation process is the lack of techniques and
tools to assure the reliability of models. Thus, the validation of models is still a tedious
task. In our previous work, we proposed cross-element validation. This process consists
of performing the validation within a model by comparing the simulation results of the
model under several instances of some of its composite elements. Elements are, for
instance, learning mechanisms or network iteration topologies. Even though it is
relatively simple, this validation process requires performing several simulations of the
model under the possible combinations that exist among a certain number of instances of
some elements. In other words, it requires several implementations of the model to
account for the above-mentioned combinations of elements. Therefore, tools to support
this validation process are required. To support the cross-element validation process for
ABS models, this paper presents cross-element validation for multi-agent-based
simulation (X-MAS). This tool provides facilities for performing easy cross-element
validation of ABS models and also facilitates the implementation of general-purpose
ABS models. To illustrate the potential of X-MAS, a cross-element validation of a
bargaining game model was performed by evaluating several learning mechanisms
applied to the agents. The findings showed that simulation results can be strongly
affected by even small variations in the elements. Therefore, cross-element validation
should be performed before deep analysis of the implemented model.

Keywords: X-MAS, cross-element validation, agent-based modeling, bargaining

INTRODUCTION

Although agent-based simulation (ABS) is becoming a prominent paradigm in the study
of complex social sciences, it still lacks the validation techniques and tools to assure the
reliability of the models. One available technique is the so-called docking or alignment of
computational models proposed by Axtell et al. (1996). This is a validation process where two
models that deal with the same phenomenon are compared, in order to determine whether the
results from one computational model match the results of another model. This process requires
the replication of one model based on the other model’s framework. However, the following

∗ Corresponding author address: Yutaka Inti Leon Suematsu, ATR International, Network Informatics

Laboratories, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan; e-mail: yutaka@atr.jp.

2

difficulties make it rather awkward: (1) models may be developed for different purposes,
(2) common parts between models may be small in number, and (3) fair evaluation criteria may
be difficult to define in order to guarantee the seeming equivalence of the models’ simulation
results.

In order to overcome the above-mentioned difficulties, our previous work proposed the

concept of cross-element validation as a process that performs the validation within a model
(Takadama et al. 2003), as opposed to docking, which consists of validation between models.
Cross-element validation consists of detecting, analyzing, and comparing the model’s macro-
behavior under different variations of some of its composite elements. Elements are, for instance,
how individual agents store knowledge, how to perform learning, or what iteration network
topology is used. By understanding whether and how the elements’ implementations affect the
model’s overall behavior, the reliability of the ABS model is expected to increase.

Cross-element validation must perform several simulations of one model with variations

of the composite elements. The number of simulations exponentially increases as both the
number of replacements of a certain element and the number of elements to be evaluated
increase. Thus, the efficient performance of each simulation is required. Another difficulty is the
modification of the model implementations, which is cumbersome. Because of these facts, even
relatively simple cross-element validation process is a tedious task. Therefore, tools with the
following three requirements are indispensable: (1) easy model implementation, (2) flexibility to
simplify model element exchanges, and (3) the construction of efficient programs to accelerate
the simulations.

Several ABS libraries and tools are available in the community for facilitating model

implementation, such as Swarm (Swarm Development Group 2005), Repast (Repast 2005), and
MASON (George Mason University 2005). Unfortunately, their use in the cross-element
validation of models is quite difficult because they do not fulfill the above-mentioned
requirements.

To support the cross-element validation process of ABS models, this paper presents

cross-element validation for multi-agent-based simulation (X-MAS). This tool provides facilities
for performing easy cross-element validation of ABS models by providing a framework wherein
several variations of some elements involved in the model can be evaluated easily without
reimplementing the model for the numerous combinations between elements. X-MAS has been
developed as a general-purpose library to support diverse ABS models, ranging from social
science to engineering.

To illustrate the potential of X-MAS, the cross-element validation of a bargaining game

model was performed, comparing the results of the model with different learning mechanisms,
such as evolution strategy (ES), learning classifier system (LCS), and reinforcement learning
(RL), and also variations in discrete and continuous values in the representation of the
knowledge.

 This paper is organized as follows. The next section describes X-MAS and its features
and gives a brief description of the composed layers. Then the bargaining model is described,
including the simulation results and a brief discussion related to the experimental findings.
Finally, a summary and future work are presented.

3

X-MAS

Features

 The cross-element validation for X-MAS provides a rich framework that facilitates both
the implementation and cross-element validation of ABS models. Additionally, X-MAS
facilitates multi-intelligent agent implementation by providing a framework that embeds the
commonly used learning mechanisms and knowledge representation schemes of agents in ABS
models. X-MAS is a collection of generic object-oriented programming libraries. Because of
performance, scalability, and portability issues, it was developed in Standard C++ with extensive
use of STL and BOOST Libraries (2005). Cutting-edge techniques of meta-programming in C++
were employed to provide facilities for easily exchanging elements for their substitutes in the
model. These characteristics make it possible to satisfy the flexibility required for the cross-
element validation process that was enumerated in the previous section. X-MAS is portable, and
the models can be compiled in several operating systems with no modifications. X-MAS only
requires the use of compilers that support major features of the C++ Standard, including partial
template specialization,1 which is supported in many modern compilers.

 X-MAS is considered a general-purpose library for multiagent systems. The core libraries
are highly customizable, providing the scalability to build domain-specific libraries and user-
customizable libraries. As shown in Figure 1, the simulation is developed in two levels. The left
side represents the implementation of the model that will be executed in the back end. Then,
visualization of the simulation results are shown and analyzed in an independent process, as
shown in the right side of Figure 1. This structure will accelerate the simulation process.

Moreover, X-MAS facilitates the maintenance of the model implementation by keeping

the core implementation of the model in one program regardless of the possible variations of the
element to be evaluated.

FIGURE 1 Simulation under X-MAS (The left side represents the
implementation of the model that is executed in the back end. Then the
simulation results are visualized and analyzed by another process, as shown in
the right side. Additionally, some GUI interfaces for controlling the simulation
and the exchange of elements for performing cross-element validation are
available.)

1 Most modern compilers support the major features of the C++ standard. However, even today, some compilers

still do not support important minor features such as partial template specialization. X-MAS makes extensive use
of the power of templates to fulfill the requirements of cross-element validation.

4

Modules

X-MAS consists of three main modules or libraries, as shown in Figure 2: (1) X-MAS

core libraries, (2) domain-specific libraries, and (3) visualization and cross-element validation
interfaces.

X-MAS Core Libraries

 X-MAS provides a set of generic libraries and utilities for easy implementation of
simulation models. Several algorithms commonly used in any model implementation are
provided with a highly customizability. Some implementations, for instance, consist of the
scheduling of agent interaction, selection algorithm, and simulation cycle control.

Domain-specific Libraries

The X-MAS framework allows the implementation of domain-specific libraries by

customizing some of the already available libraries. X-MAS provides libraries for supporting
intelligent agents by providing several learning mechanism algorithms such as RL, LCSs, genetic
algorithms (GAs), and ESs. It also provides genotype-based, rule-based, and other algorithms
with discrete and continuous values as knowledge representation schemes. Each algorithm
provides a default setting and a highly customizable framework to include variations of the
algorithm by allowing parts of the algorithm to be replaced with user’s algorithms, such as
different crossover algorithms applied to GAs.

FIGURE 2 The three X-MAS modules

5

Visualization and Cross-element Validation Interfaces

The main purpose of X-MAS is to provide a set of interfaces to interact with the model. It
includes some interfaces to visualize the simulation results of the model under all of the possible
combinations between elements. For instance, as represented in Figure 3, it is assumed that the
model consists of agents that have learning capabilities and representation capabilities for the
knowledge. Three implementations for each involved element are considered. A1 to A3 and B1
to B3 represent implementations of the possible learning mechanisms and knowledge
representation schemes, respectively. Therefore, this may require evaluating the model with the
nine possible combinations between both elements. As shown in the left side of Figure 3,
X-MAS allows the implementation of one model where the combination of the involved element
to be evaluated can be easily selected, as opposed to the nine reimplementations of the model
with traditional tools. Furthermore, X-MAS provides interfaces to plot the simulation results of
the model under all possible combinations among elements, as presented in the right side of
Figure 3. Finally, from these results, the equivalence and implications of the implementations of
the model elements can be easily evaluated. In the right side of Figure 3, the red box represents
equivalent simulation results in six implementations of the model. Therefore, it can be said that
the model produces invalid (strange) results when using B3 as element B, as opposed to valid
results for the other implementations. As a consequence, the model can be minimally validated
under implementations B1 and B2 as element B and all three implementations of element A.

 This module is still undergoing development. Because of the fact that there are no
standard graphic libraries in the C++ standard, which is a major disadvantage, some interfaces
with Python and Java are planned for further development.

ElemA3

ElemA2

ElemA1

ElemB3ElemB2ElemB1

ElemB = {1,2,3}

E
le

m
A

=
{1

,2
,3

}

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0

10

20

30

40

50

60

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
5

10
15
20
25
30
35
40
45
50

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
5

10
15
20
25
30
35
40
45
50

1 月 2 月 3 月 4 月

Param1
Param2
Param3

Element B (Knowledge representation)

E
le

m
en

t A
(L

ea
rn

in
g

m
ec

ha
ni

sm
)

Model

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

ElemA3

ElemA2

ElemA1

ElemB3ElemB2ElemB1

ElemB = {1,2,3}

E
le

m
A

=
{1

,2
,3

}

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0

10

20

30

40

50

60

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
5

10
15
20
25
30
35
40
45
50

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

0
5

10
15
20
25
30
35
40
45
50

1 月 2 月 3 月 4 月

Param1
Param2
Param3

Element B (Knowledge representation)

E
le

m
en

t A
(L

ea
rn

in
g

m
ec

ha
ni

sm
)

Model

0
10
20
30
40
50
60
70
80
90

100

1 月 2 月 3 月 4 月

Param1
Param2
Param3

FIGURE 3 Image of the use of X-MAS

6

CASE STUDY

Bargaining Game

 As a concrete example, the bargaining problem (Muthoo 2000) was employed, which
addresses a situation where two or more players try to reach a mutually beneficial agreement in
order to maximize their profits through negotiations. This problem was selected because it has
been studied in the context of game theory (Osborne and Rubinstein 1994) for several years, and
its results are well known. Therefore, simulation results can be evaluated by comparing them
with the rational behavior of players.

 The problem considered in this research is the one proposed by Rubinstein (1982). This
model uses the following scenario. Two players, P1 and P2, have to reach an agreement on the
division of a pie. For this purpose, they alternate offers, describing the possible division upon
which they would like to settle. The player who receives the offer has to decide whether to
accept it or not. If the offer is accepted, the negotiation process ends, and each player receives
the share of the pie determined by the concluded contract (e.g., P1 receives x and P2 receives
1 − x at time t, where x is a value in the interval [0,1]). Otherwise, the receiving player makes a
counter-offer, and all of the above steps are repeated until an agreement is reached, or the
process is aborted when the limit number of offers is reached; in that case, both players receive a
null payoff.

 For experimentation, a finite-horizon model was employed, where the maximum number
of steps in the game is fixed and known by both players as common information. In the case
where the maximum number of steps is one (also known as the ultimatum game), the proposer
(player P1) makes the only offer, and the responder player (P2) can either accept it or not. If P2
refuses the offer, both players receive a null payoff. Since a rational player always takes actions
that maximize her payoff, P1 tries to keep most of the pie to herself by offering only a minimum
share to P2. Since there are no further steps to be played in the game, P2 inevitably accepts the
tiny offer, under the notion of “anything is better than nothing.”

 By applying a backward induction reasoning to the situation above, it is possible to
analyze situations where the maximum number of steps is greater than one. For the same reason
as that of the ultimatum game, the player who can make the last offer in a finite game where
payoffs are not discounted by time has a great advantage to obtain the larger share2 of the pie by
making a minimum offer (Stahl 1972).

Model

 The implemented model was designed in the framework of the bargaining game as
follows:

2 In this paper, the terms payoff and agent are used instead of the terms share and players for their more general

meaning in the bargaining game.

7

Model Structure

The basic structure of the agents was implemented using the following components as
shown in Figure 4. Note that each agent has the same architecture.

< Memory >

Strategies memory. This stores a set of strategies that agents use during negotiation (in
Figure 4, the number of strategies is n). Each strategy consists of a fixed number of
paired offer (O)/threshold (T) values and the worth of the strategies (w). These strategies
are similar to those used in Oliver (1996). The offer and threshold values are encoded by
floating point numbers in the interval [0, 1], while the worth values are calculated as
averages of acquired payoffs. In this model, agents independently store different
strategies, which are initially generated at random.

Selected strategy memory. This stores the strategy selected to confront the strategy of an
opponent agent. Figure 4 shows the situation where agent A1 selects the xth strategy,
while agent A2 selects the yth strategy.

< Mechanism >

Learning mechanism. This modifies both offer and threshold values in order to generate
good strategies that acquire a large payoff.

 As a concrete negotiation process, agents proceed as follows. Defining as the
ith offer or threshold value of agent A1 or A2, agent A1 starts proposing the first offer . Here,
it is counted as one step when either agent makes an offer. Then A2 accepts the offer
if ; otherwise, it makes a counter-offer (i.e., the offer of A2). This cycle is repeated

}2,0{},{ A
iTO

1
1
AO

21
11

AA TO ≥ 2
2
AO

FIGURE 4 Bargaining model structure (Each agent consists of a memory, which
is a set of strategies the agent uses during negotiation, and a learning mechanism
to improve the strategies.)

8

until either agent accepts the offer of the other agent or the maximum number of steps is
exceeded. To understand this situation, let’s consider a simple example where the maximum
number of steps is 10, as shown in Figure 5. Following this example, A1 starts by offering 0.01 to
A2. However, A2 cannot accept the first offer because it does not satisfy the
inequality . Then, A2 counter-offers 0.01 to A1. Since A1 cannot accept the
second offer from A2 for the same reason, this process is repeated until A1 accepts the 10th offer
from A2 where the offer satisfies the inequality 1010 . In case the negotiation
fails, which means that the maximum number of steps has been exceeded, both agents can no
longer receive any payoff (i.e., they receive 0 payoff). Here, this is counted as one confrontation
when the above negotiation process ends (satisfactory or unsatisfactory.)

)99.0()01.0(21
11

AA TO ≥

)01.0()01.0(12 AA TO ≥

 Furthermore, the worth of each strategy is calculated by the average of payoffs acquired
during a fixed number of confrontations (CONFRONTATION), where the strategies of the other
agent are randomly selected in each confrontation. For example, the xth strategy of A1 in
Figure 4 confronts the randomly selected strategies of the other agent in the predefined number
of confrontations, and then the worth of the xth strategy is calculated by the average of payoffs
acquired during these confrontations. Since each agent has n number of strategies, the
(CONFRONTATION × n × 2) number of confrontations is required to calculate the worth of all
strategies of both agents. Here, it is counted as one iteration when the worth of all strategies of
both agents is calculated.

Elements for Cross-element Validation

 The focus of this case study is to make some comparative studies to investigate the
influence of different learning mechanisms and knowledge representation schemes (Takadama
et al. 2003). For this purpose, each element was designed as follows.

Learning Mechanisms

 When the learning mechanisms of agents are being implemented, several mechanisms
can be considered. Among the many useful learning mechanisms, the following were employed:
(1) ES (Back et al. 1991, 1993), (2) LCS (Goldberg 1989; Holland et al. 1986), and (3) RL
(Sutton and Barton 1998).

FIGURE 5 Negotiation process between
two agents

9

Knowledge Representation Schemes

 In the bargaining game, the representation of the agents’ strategies must be considered,
though there are no standard guidelines. From this fact, the following two types of knowledge
representation capabilities were employed: (1) continuous real numbers (e.g., 0.01…) and
(2) real numbers restricted to two decimal digits (e.g., 0.01; called discrete numbers in this
paper). The reason why this knowledge representation was employed is because (1) social
scientists may take the latter case for a concise representation and (2) a real number in offer and
threshold values is critical in the bargaining game.

Simulation Results

 Figure 6 shows the simulation results of the possible combinations among learning
mechanisms (ES, LCS, and RL) with the two knowledge representation schemes (continuous and
discrete). All figures indicate the results of the payoff. The vertical axis indicates the payoff,
while the horizontal axis indicates the iteration number. In particular, Figure 6 shows the payoff
of agent A1 in the lower lines and that of A2 in the upper lines. Figures 6(a) and 6(b) represent
the results when using continuous values as knowledge representation schemes with ES and
LCS, respectively, as learning mechanisms. Similarly, Figures 6(c), 6(d), and 6(e) represent the
results when using discrete values as knowledge representation schemes with ES, LCS, and RL,
respectively, as learning mechanisms. These results show that simulation results do not exhibit
the same tendency when different learning mechanisms or knowledge representation schemes are
applied to agents.

FIGURE 6 Simulation results

10

Discussion

Results of Cross-element Validation

 Theoretical results from game theory prove that both rational agents A1 and A2 receive
the minimum and maximum payoffs at the final negotiation process, respectively. This is
because A1 in our simulations has to accept any small offer proposed by A2 at the 10th
negotiation process; otherwise, A1 cannot receive any payoff (i.e., it receives a null payoff).
Therefore, it was expected that learning agents can acquire the maximum and minimum payoffs.

 Analyzing Figures 6(a) and 6(b) shows that the payoff of ES-based agents finally
converges at the mostly maximum or minimum value (i.e., 1 or 0), while that of LCS-based
agents neither converges at a certain value nor becomes close to the maximum or minimum
value. From Figures 6(a) and 6(c), it is observed that the results of ES-based agents using
discrete knowledge representation degrade the results obtained when using continuous
knowledge representation (note the rather wavy lines in Figure 6(c)). Finally, from Figures 6(c)
and 6(e), it is observed that the payoff of ES-based agents was effected using two decimal digits,
while RL-based agents converge at the mostly maximum or minimum value (i.e., 0.9 or 0.1).

 These results show that ES-based agents with continuous knowledge representations and
RL-based agents with discrete knowledge representations could produce results as expected by
game theory. Therefore, both models are minimally validated.

 From this analysis, it can be concluded that simulation results are sensitive to the learning
mechanisms applied to agents. Also, even minor considerations in the knowledge representation,
particularly discrete and continuous representations, may produce unexpected results.

 As a result, it is strongly recommended that some cross-element validation of models be
performed before deep analysis and interpretation of their simulation results.

X-MAS Compared with Other Tools

 In order to help researchers in the field of social sciences simulate their models, several
tools have been developed to reduce the difficulties of the programming process and enhance the
understanding of the outcomes (e.g., Repast, Swarm, and Mason). However, performing
cross-element validation will require the knowledge of some internal libraries to easily exchange
elements in the model. In several cases, it may require reimplementation for all possible
substitute elements in the model. The reason for this is that they are not designed for validation
purposes but for easy program implementation. X-MAS, on the other hand, was designed to
support the cross-element validation of ABS models and to facilitate program implementation.

 X-MAS provides a framework for implementing generic models, and several variations
of the model can be performed more easily. It is expected to be considered as a framework for
the replication of models.

11

SUMMARY

 Although ABS is becoming an essential tool in the study of complex social sciences, the
validation of ABS models is still an important issue to be considered. Cross-element validation
was proposed in our previous work. This process consists of performing the validation within a
model by comparing the simulation results of the model under several instances of some of its
composite elements. To support the cross-element validation process of ABS models, this paper
presented the cross-element validation for multi-agent-based simulation (X-MAS). This tool
provides facilities for simplifying the cross-element validation of ABS models. It also facilitates
the implementation of general-purpose ABS models. The potential of X-MAS was tested by
means of a bargaining game model, by evaluating several learning mechanisms applied to the
agents. It showed that simulation results can be strongly affected by even small variations in the
elements. In particular, arbitrary assumptions in the learning mechanism and knowledge
representation schemes may produce unexpected results. Therefore, cross-element validation
should be performed before deep analysis and interpretation of the implemented model.

 Further research includes (1) implementating several GUIs for interaction with models
and (2) performing cross-element validation of several models.

ACKNOWLEDGMENTS

This research was conducted as part of “Research on Human Communication” with
funding from the National Institute of Information and Communications Technology (NICT),
Japan. The research was also supported in part by the Sasagawa Scientific Research Grant from
the Japan Science Society. In addition, it was supported in part by a Grant-in-Aid for Scientific
Research (Young Scientists (B), 17700139) from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan. We would like to express our thanks for all of the
above support.

REFERENCES

Axtell, R., R. Axelrod, J.M. Epstein, and M. Cohen, 1996, “Aligning simulation models: A case

study and results,” Computational and Mathematical Organization Theory (CMOT)
1(1):123–141.

Back, T., F. Hoffmeister, and H. Schwefel, 1991, “A survey of evolution strategies,” in

Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 2–9.

Back, T., F. Hoffmeister, and H. Schwefel, 1993, “Evolutionary programming and evolution

strategies: Similarities and differences,” in Proceedings of the 2nd Annual Conference on
Evolutionary Programming, pp. 11–22.

Boost Libraries, 2005, home page; available at http://www.boost.org/.

George Mason University, 2005, MASON; available at http://cs.gmu.edu/~eclab/projects/

mason/.

http://cs.gmu.edu/%7Eeclab/projects/

12

Goldberg, D., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley.

Holland, J., K. Holyoak, R. Nisbett, and P. Thagard, 1986, Induction, The MIT Press.

Muthoo, A., 2000, “A Non-technical Introduction to Bargaining Theory,” World Economics

1(2):145–166.

Oliver, J., 1996, On Artificial Agents for Negotiation in Electronic Commerce, Ph.D. thesis,

University of Pennsylvania.

Repast, 2005, home page; available at http://repast.sourceforge.net/.

Osborne, M., and A. Rubinstein, 1994, A Course in Game Theory, The MIT Press.

Rubinstein, A., 1982, “Perfect Equilibrium in a Bargaining Model,” Econometrica 50(1):97–109.

Stahl, I., 1972, Bargaining Theory, Economics Research Institute at the Stockholm School of

Economics.

Sutton, R., and A. Barto, 1998, Reinforcement Learning: An Introduction, The MIT Press.

Swarm Development Group, 2005, home page; available at http://www.swarm.org.

Takadama, K., Y. Leon, N. Sugimoto, E. Nawa, and K. Shimohara, 2003, “Cross-element

validation in multiagent-based simulation: Switching learning mechanisms in agents,”
Journal of Artificial Societies and Social Simulation 6(4).

	X-MAS: SUPPORTING THE TEDIOUS WORK OF VALIDATION IN AGENT-BASED SIMULATION
	ABSTRACT
	INTRODUCTION
	 X-MAS
	Features
	Modules
	X-MAS Core Libraries
	Domain-specific Libraries
	 Visualization and Cross-element Validation Interfaces

	 CASE STUDY
	Bargaining Game
	Model
	 Model Structure

	Elements for Cross-element Validation
	Learning Mechanisms
	Knowledge Representation Schemes

	Simulation Results
	Discussion
	Results of Cross-element Validation
	X-MAS Compared with Other Tools

	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

